

How efficient AntiViruses are: An empirical investigation of
AntiViruses with RATs

By: Dr Mahdi Aiash

AntiViruses (AVs) have always formed the main line of defence to secure our systems. However,
despite the huge number of AV programs and the immense effort to improve their detection
techniques, the past few years witnessed a dramatic increase of Cyber incidents. Unfortunately, many
of the recent malware attacks have been able to bypass AV software and infect systems. Mainly this
could be due to the fact that AVs are very efficient at catching and blocking low-level malware but not
at catching the unknown, such as non-malware or file-less attacks, for example. AVs in general try to
detect malware by examining a file or process to determine if it’s bad on the basis of its resemblance
to previously seen malware.

This paper conducts an empirical investigation of the efficiency of Antivirus programs in detecting
malware. In order to draw a more realistic conclusion, the investigation considers the case of known
malware deploying various evasion techniques as well as the case of a newly developed Remote
Access Trojan. To analyse the efficiency of AVs, various evasion techniques are deployed by a known
malware and checked using 35 different AV available through No Distribute online AV scanner.
Additionally, a new Remote Access Trojan (RAT) is developed and checked through the same AVs of
the No Distribute scanner. This latter investigation will give an indication on how efficient AVs are in
detecting new malware.

 The investigation highlights the need for a second line of defence which was implemented using
Snort, a well-known Intrusion Detection System.

1. The Testbed
In order to simulate real-life scenarios while testing AVs along with any proposed enhancements,
a testbed is created using Oracle VM VirtualBox, which is a hypervisor for x86 computers
developed by Oracle Corporation. As shown in Fig 1, using VirtualBox we create two Virtual
machines. Both virtual machines are able to communicate with each other as in a Local Area
Network (LAN) and to access the Internet through the Network Address Translation (NAT)
interface.

Figure 1: The TestBed

To test the detection engines of different AVs, we use the No Distribute (NoDistribute) online
scanner which compares 35 Antivirus solutions at the time of writing. To double check the results of
the online scan, the tested, sample malware will also be scanned on the victim’s virtual machine
using AVG 2016, which is in the Top 10 rated AntiVirus solutions for Microsoft Windows (tested by
AV-Test).

The detection test is divided into two main parts:

• To apply a number of the most common evasion techniques to a known malware and test
with the online scanner. This will give an idea on how efficient AVs are against evasion
techniques.

• To develop a new RAT as a malware and to test it using the online scanner. This helps
evaluating AVs against new, unknown malware.

For the first part of the test it is required to have a known malware that is detected by most AV
solutions. This can be generated on the Kali Linux VM using msfvenom utility. It is used in this
research to create sample malware’s payload (sample.exe) that connects back to the attacker
machine through a reverse TCP shell, giving the attacker access to the victim system as in Fig 2:

Figure 2: Reverse Shell Connection test

To set the baseline, we submit the sample.exe file to No Distribute, since no evasion has been used,
the malware has been detected by most AVs. As shown in Fig 3, only 23 out of 35 AVs were able to
detect the threat. Clearly with a common payload like this, the results were below the expectations.

Figure 3: Result of sample.exe scanning

2. Testing Different Evasion
The main evasion techniques will be applied and then an online scan with No Distribute will be
executed.
2.1. Footprint Manipulation:

This technique needs to identify the part of the file where the malicious code is written to.
In order to do so, the following steps are applied:

• Split the file into chunks of a certain size.
• Scan each chunk to find the one that has the malicious code.
• Repeat the previous steps until the malicious code is isolated.
• Edit the malware with a hexadecimal editor.

The tool of choice to split the file is File Splitter. Following the above steps, we find that the
part of the code that triggers AVs is in the first 640 bytes of the file. The next step is to edit
the file with a hexadecimal editor such as HxD. As shown in Fig 3, it is possible to change some
parameters; for instance, in the sentence starting on the offset 00000040: ”This program
cannot be run in DOS mode”, replacing the word ”DOS” with ”ABC” will give the scan results
shown in Fig 4. As it is possible to see in the figure, the MD5 for the file has changed and the
detection rate is now 20/35 which is 3 AntiVirus less than the original scan.

Figure 4: Hexeditor-Sample.exe

Figure 5: Scan result (editing footprint)

2.2. Use a Binder
A binder is a program that is used to join two or more PE files into a single file. This is used to
hide the first bytes of the malicious code, putting another program at the beginning. There
are different binders on the market. For this research, we use IExpress binder which is
provided free of charge from Microsoft to hide the code of the sample.exe inside the
calculator program (calc.exe). The output will be a file that will start the calculator utility on
the victim machine and launches the sample.exe. Scanning the resulted output shows more
interesting results as in Fig 6. Obviously, the MD5 for the file is completely different from the
original one, but the most interesting part is the rate of 11/35. More than half of the AVs that
originally flagged the malware as malicious file, now consider it as legit. This is probably due
to the fact that for computational reasons, most AVs limit their scan to the first bytes of a
file. AntiViruses give up really quickly, and since the first thousands of bytes seemed
legitimate, they are not able to determine the threat.

Figure 6: Scan of the sample using binder

2.3. Obfuscating the code
Obfuscation is a technique used to make it more difficult to reverse engineer a program. This
can also be useful when it comes to evading signature. In this paper, the tool that is used to
test the sample malware is PEScrambler.exe. This program changes the signature by adding
junk code or dead callback functions. Once downloaded, it can be launched on the Kali
machine using Wine utility as follows:

wine PEScrambler.exe -i sample.exe -o sample obfuscated.exe

The file is still working after the obfuscation, the scanning result of No Distribute is shown in
Fig 7. From the scanning result, it is obvious that obfuscation was not very effective as it only
helped evading few AVs.

Figure 7: Scan of the sample using obfuscation

2.4. Automated Tools For Malware Encoding:
There are many tools available that automate the task of AntiVirus evasion through encoding.
One of the most popular among Penetration Testers is Veil-Evasion. Veil-Evasion is a tool
designed to generate metasploit payloads that bypass common AntiVirus solutions. We
generated a powershell malware that starts a reverse meterpreter shell to the attacking
machine as shown in Fig 8.

Figure 8: Create a payload with Veil-Evasion

Scanning the generated payload with NoDistribute shows that more AVs have been evaded as shown
in Fig 9.

Figure 9: Scan result of a Veil generated file

To improve the evasion of the Veil malware, we combine manual techniques together and try to
achieve a better evasion. For example, applying the binder technique after converting the previous
payload from .bat to .exe, the online scanner gives back much better results as in Fig 10. At this point

it is possible to say that the payload goes undetected on almost every AntiVirus solutions, exposing
end users to risks.

Figure 10: Detection result of a Veil generated file (applying Binder)

Another tool that is relatively new is Shellter. Shellter is a dynamic shellcode injection tool that works
with 32bit PE files. The main feature of Shellter is altering the structure of PE files (given in input by
the user) using polymorphic junk code and applying advanced code obfuscation techniques. The main
screen of Shellter only asks for the PE file. The file used for this test is calc.exe. Once finishing the initial
setup and configuration, the original calc.exe file will be a malicious PE. Although this is an automated
and widely available tool, the result of the scan shows that the payload goes undetected on every
AntiVirus solution registered on No Distribute as shown in Fig 11.

Figure 11: Result of a file injected with Shelter

3. Developing the RAT
The second part of the testing phase involves the use of a RAT (Remote Access Toolkit). This is
written using Python scripting language. A RAT is able to inject different payloads to the infected
machine. The developed RAT implemented the following payloads:

• Shell: This payload is used to get a reverse-shell on the remote system (the Victim).
• Screenshot: taking screenshots can be useful to figure out some installed applications by

checking screenshots of the victim machine’s desktop.
• Keylog: this feature will be effective to get information such as typed passwords, credit

cards details and for social engineering as well.
• Grab: copy a file from the victim machine to the attacker machine.
• Put: copy a file from the attacker machine to the victim machine.

The RAT is divided into two files; a server.py and a client.py. The server file is the one launched on
the Kali machine by the attacker and acts exactly as a server, listening for incoming connections
by binding itself to a given IP and port number. The client file is the one that the victim is supposed
to open to start the reverse connection. The attacker sends the command to the victim machine,
and the client side of the RAT executes the action locally and then sends back the result to the
attacker. The interaction with the user is entirely done by command line. Once the connection is
established, the main control panel of the RAT will show the commands and the instructions as in
Fig 12.

Figure 12: RAT: Main screen

3.1. SSH connection and Paramiko
The main part of the RAT is related to handling the connection between client and server.
The RAT has been developed with the aim of evasion, therefore; the connection itself should
be able to bypass most AVs. For this reason, the choice was to use Secure Shell (SSH) protocol.
The fact that the information with SSH is encrypted gives an advantage in terms of detection,
since the AntiVirus software is not able to analyse the messages exchanged in the connection.
Furthermore, it is very unlikely for AVs to flag an SSH connection as malicious, due the fact
that this protocol is widely used by Network and System Admins. We implemented SSH using
Paramiko module of Python.

3.2. Getting the shell:
Probably the most important payload is the shell. This allows attackers to get access to the
command line of the victim machine. We use the NetCat utility, to bind of a system shell.
Combined with SSH, this shell shall stay undetected. The steps to get a shell are:

• The attacker sends a command to execute through the SSH channel.
• The victim, listening on the allocated port receives the command and executes it

locally.
• The outcome of the command is sent back to the attacker through the same channel.

3.3. Files transfer:
Another important feature is the possibility to transfer file both ways between the victim and
the attacker. This feature is implemented using SSH File Transfer Protocol (SFTP) which uses
the SSH protocol to assure an encrypted file transfer. Since this protocol uses port 22 as well,
it was necessary to add another Network Interface Card (NIC) (Host-Only) to the Kali machine,
and then bind the SSH server to the new NIC’s IP address.

3.4. Windows Keylogger:
 Being able to capture the keystroke of a remote user is a good way to obtain sensitive
information. Apart from registering keystrokes, the implemented keylogger is also capable of
acquiring information on the application where the user is typing (e.g. if he is typing in a
browser or in a word document). The keylogger was implemented using a module in python
called pyHook.

3.5. Python to Executable:
The whole RAT is written in Python. Therefore, for testing purposes, the Windows 7 machine
of the testing scenario has a Python interpreter and compiler already installed to understand
and run Python scripts. However, in a real-life scenarios, it is unlikely that a Windows machine
comes with a Python interpreter installed. The fastest solution is to convert the Python client

file of the RAT into a PE file. To achieve this, the Py2Exe utility was used to convert the .py
script into .exe to work in Windows environment.

The main purpose of creating a new RAT is to test AVs’ detection capabilities when analysing unknown
threats. The whole RAT has been developed with evasion in mind. Using SSH and SFTP, the malware
is able to encrypt the communications and evade detection engines. Furthermore, converting the
script into .exe involves using binders which modifies the software signature. We tested the RAT on
NoDistribute, none of the AntiVirus solution was able to flag the file as malicious as shown in Fig 13.

Figure 13: RAT: results by No Distribute

To confirm the result, we tested the RAT using AVG AntiVirus installed on the Windows 7 machine.
Even using the Heuristic engine, AVG did not manage to detect any malicious activities as shown in Fig
14.

Figure 14: RAT: result by AVG Heuristic Engine

4. Intrusion Detection Systems vs RAT
There are other advanced tools that could be used to detect suspicious files such as Intrusion
Detection Systems (IDSs). It is possible to implement a second layer of security using an Intrusion
Detection System. An IDS is a software (or a device) that monitors the network for malicious
activities or policy violations. One of the most popular IDSs is Snort which has been widely used in
both production and research environments. To detect the developed RAT, we installed Snort on
the Windows machine (the victim machine) and configured it to monitor and log all traffic started
and destined to the attacker’s network address.
The next step is to set up the RAT. Once started, a successful connection to the victim’s machine
is still successful, but the Snort console seemed to detect some activities as shown in Fig 15. Snort
was able to see the malicious connection and flag it as ”Potentially Bad Traffic”.

Figure 15: Snort Detection

When Snort detect a malicious packet, it saves a log file in binary PCAP format, which is possible to
open with a software like Wireshark. Once opened it is possible to see full information on the detected
packet as in Fig 16. The information carried by the packet is encrypted because it uses SSH protocol.
However, since SSH is an application layer protocol, the remaining information in the other layers of
the OSI model are not encrypted. It is possible to find out the attacker’s IP address and potentially
blacklist it. Furthermore, it is possible to use Snort as an Intrusion Prevention System (IPS) to block the
detected packet before it can establish the SSH connection.

Figure 16: Wireshark Analysis

The analysis in this article is based on an online scanner while applying one (or more) evasion
technique. Based on the analysis, it is possible to compare the efficiency of different AVs in detecting
malware in the presence of evasion techniques. Since it is infeasible to compare every AV on the
market, the presented comparison considered the AVs available in the No Distribute online scanner
as well as Microsoft or Emsisoft which will be checked on Windows 7 Virtual machine. Fig 17 shows
how AVs’ detection ability decreases as the evasion complexity increases. The figure also shows that
using Binders as one of the oldest evasion technique was successful to evade a number of AVs. This
implies that these AVs analyse the first bytes of the suspected code, but not the entire file.
Additionally, it obvious from the figure that a more effective evasion is achieved by combining more
than one evasion technique; using a binder with Veil for instance.

Figure 17: Comparison of AntiViruses

